International Journal of Computer Integrated Manufacturing Taylor & Francis
Vol. 22, No. 7, July 2009, 671-685

Taylor & Francis Group

A conceptual framework for computer-aided ubiquitous system engineering: architecture and
prototype

Suho Jeong?, Seung Min Hur™® and Suk-Hwan Suh®*

“Department of Industrial and Management Engineering, POSTECH, Pohang, South Korea; ®Center for Ubiquitous
Manufacturing, POSTECH, Pohang, South Korea

(Received 20 April 2009, final version received 10 May 2009)

Ubiquitous computing technology has been rapidly advanced and applied to diverse domains. This paper proposes a
new approach, called CAUSE (Computer-Aided Ubiquitous System Engineering), for implementing ubiquitous
manufacturing systems. This method has great potential compared with the conventional ones that rely on physical
implementation and human experience through trial-and-error correction. Specifically, this paper develops a
framework for the software supporting the ubiquitous system engineering based on requirement analysis, functional
details, and implementation issues including enabling technology. The usefulness of the proposed method is shown
by developing a prototype system for a ubiquitous manufacturing system with radio frequency identification
(RFID).

Keywords: ubiquitous computing technology; UbiDMR; ubiquitous convergence technology; ubiquitous system

engineering; ubiquitous manufacturing system design; RFID application

1. Introduction

Since the concept of ubiquitous computing was
proposed in early 1980s, the hardware/software
technology for realising the ubiquitous system has
been greatly advanced. In a ubiquitous system,
required information is collected from a variety of
sensors and distributed via communication networks
anytime and anywhere. There have been a number of
attempts to apply such ubiquitous technology to
diverse domains such as home, hospital, factory, traffic
system, surveillance/monitoring system, battlefield,
logistics, etc. As far as applied technology is con-
cerned, almost all the applications use RFID (Radio
Frequency Identification) technology for identification
of the PPR (Product, Process, and Resource) (Huang
et al. 2007, Huang et al. 2008a, Huang et al. 2008b).
Our research group proposed a new product
lifecycle engineering paradigm called UbiDMR (De-
sign, Manufacture, and Recycling via Ubiquitous
Computing Technology), whose main issue is the
utilisation of the entire product lifecycle information
via ubiquitous computing technology for product
design, manufacturing, and recycling (Suh et al
2008). Realising such a paradigm requires integration
of several domain technologies, such as manufacturing
technology, information technology, and ubiquitous
computing technology. In our publication, we pro-
posed a technology roadmap, as shown in Figure 1.

The enabling technology is largely composed of: 1)
horizontal integration technology to build up an
integration highway, called the UPLI (Ubiquitous
Product Lifecycle Information highway), for seamless
information exchange among stakeholders associated
with the product life cycle, 2) vertical integration
technology dealing with sensors, devices, and commu-
nication used to extract information from the PPR in
the physical world, and 3) system engineering technol-
ogy to establish the ubiquitous system through the
horizontal and vertical technology, including design,
simulation, analysis, and evaluation of the ubiquitous
system on the computer.

Following the UbiDMR paradigm, innovative
services can be derived in the line of product lifecycle
engineering spectrum. Our previous publications have
developed a conceptual framework and architecture
for each service, and showed the following u-Services
were effective in usage scenarios: u-Factory (Shin et al.
2007), u-PRMS (Um et al. 2008), and UPLS (Lee and
Suh 2008). In order to realise a new u-Service and take
full benefit of the UbiDMR paradigm, system en-
gineering is a key technology. System engineering
technology includes design, analysis, and optimisation
of a specific ubiquitous system as characterised by the
product type and environment where the product is
manufactured, used, and recycled. This paper is
concerned with system engineering for the ubiquitous

*Corresponding author. Email: shs@postech.ac.kr

ISSN 0951-192X print/ISSN 1362-3052 online
© 2009 Taylor & Francis

DOI: 10:1080/09511920903030387
http:/pwww.informaworld.com

www.manaraa.com

672

S. Jeong et al.

g
=
=)
'E RService [U-SCM] [U-Desngn] [U-Factory J [U-Momtorng [U-Mamtenance] [U-PRMS]
@
=
£ x x x x T T
P
= UPLI: Ubiquitous Product Lifecycle Information highway
= Unified product s Dynamic Process-oriented :
= & Data & usage Interoperability 3 Data encryption &|
= UPLI lifecycle] [sssagéorent] [method] [busmess process] [Knowledge]
E Data model g t management
=]
= \/ T
Y 'SE: Computer-Ai. ~
- Ubiquitous System Engineering -
- N/
S'ysten? P e u-System u-System u-System u-System \ i
Eﬂ engineering - 2 esign/Modelin; Analysis Jl Mock-up J¥Optimization T2l -
° 1
= ! |
= = @ S
g | .g 2 T Za 2 23 zs
= NEHREHRREHEE z || % ANNARR £3) |52 |
2 =5l 56| | (2] | & 2 || g = &3 SE[|E8| |
= : 2 S
E" u-Technology : S g2 5 2 > g ©na O i
E)| Interface Processing Communication Security I
S ! D2U (Device to UPLI) 1
= 1
e . x] —
N Device on I = : o i
product & Smart. By Active —A L - Smart card ',,
. I = sensor = badge % Cellular phong i
environment o = —= e
s B . . - — - - 1
Figure 1. Enabling technology of UbiDMR (Suh et al. 2008).
system called CAUSE (Computer-Aided Ubiquitous) oiaees
expertise on system intuition

System Engineering) indicated by the dotted box in
Figure 1.

At present, most system engineers on the ground
develop ubiquitous systems relying on their experience,
knowledge, and know-how in a trial-and-error man-
ner, as shown in Figure 2(a). However, as the
complexity as well as the size of the applied ubiquitous
systems increase, system performance becomes harder
to predict and verify without physical implementation.
For instance, in a simple ubiquitous system composed
of only RFID components, even an experienced
engineer reported difficulty when the number of
readers was more than three (Nishikawa et al. 2006).
Further, the difficulty will increase as the number and
type of ubiquitous system components (such as
sensors, network, etc.) increase, or as the operational
scenario gets complicated. Developing a system in this
way can incur significant costs to fix errors, especially
when the components are expensive. Moreover, fixing
errors after implementation seems impossible in
ubiquitous systems such as battlefield. Therefore, a
computer-aided system engineering, namely CAUSE is
needed before the physical implementation of a
ubiquitous system: " CAUSE whelpsy the ubiquitous

ubiquitous

i engineer’s
technologies

intuition

Desi

)] Optimization

Implementation

trial & error
Reduced!

NN | - S =

(a) Conventional method (b) CAUSE

Figure 2. Comparison between the conventional method
and CAUSE.

system engineer by providing tools for design, simula-
tion, and analysis in a unified fashion as shown in
Figure 2(b), where the trial-and-error is done via
computer.

Formally, CAUSE is defined as a methodology for
the systematic design of ubiquitous systems through
simulation and analysis (Suh et al. 2008), and the
CAUSE system as a software system supporting
CAUSE. For the sake of convenience, however, this
paper will not differentiate between them. This means

www.manaraa.com

International Journal of Computer Integrated Manufacturing 673

that CAUSE often stands for the CAUSE system.
CAUSE ultimately aims to derive, verify, and validate
the optimal design alternative for the target ubiquitous
system before the physical implementation. Thus,
CAUSE can be regarded as a V&V (Verification and
Validation) process for the designed ubiquitous sys-
tems. In other words, CAUSE system verifies whether
or not the designed system works well through
simulation and analysis, and validates whether or not
the designed system is optimal in a certain sense. From
another viewpoint, CAUSE can be considered as a
CAx (where x means application area, like CAD for
design, CAM for manufacturing, and CAE for
engineering analysis) tool for ubiquitous system
engineering.

It is worth mentioning that the target system for
CAUSE can be either: 1) A product manufacturing
system, or (2) An information engineering system. In
the case of product manufacturing systems, like the
contemporary CAD/CAM/CAE, CAUSE should be
designed to support design, simulation, and analysis of
ubiquitous manufacturing systems. On the other hand,
in the case of information engineering systems,
CAUSE should support the selection of the sensors
and networks used to collect, aggregate, and transmit
data to the UPLI, perform the verification and
validation process, and conduct simulations. In this
paper, for the clarity of presentation, the target system
is limited to the product manufacturing system.

The remainder of this paper is organised as follows:
Section 2 reviews the previous work related to the
CAUSE system; Section 3 discusses the requirement
analysis from system-level and functional-level aspects,
and Section 4 derives the proposed architecture of
CAUSE system; Section 5 presents the implementation
strategy including enabling technology; and Section 6
shows the usefulness of CAUSE by introducing a
prototype called ‘CAUSE for RFID’ for a ubiquitous
manufacturing system with RFID. Finally, Section 7
concludes the paper.

2. Related work

This section reviews existing tools related to the
CAUSE system. Table 1 compares the related work
from the viewpoint of the functions which the CAUSE
system should have. Specifically, the purpose of the
tools is described, and the support of the system
engineering and the accommodated technology is
compared item by item. Items from the perspective of
system engineering include design, simulation, analy-
sis, and evaluation, while accommodated technology
means the technology accommodated by the system
such as WLAN (Wireless Local Area Network),
WPAN(Wireless PersonalmAreaNetwork), RFID

(Radio Frequency Identification), security, and context
awareness. These items are marked differently depend-
ing on the degree of satisfaction.

System engineering includes previous work in CAXx,
(for instance CAD/CAM, CAD/CAE, etc.). For
instance, ARENA (Arena [Online]), Promodel (Pro-
model [Online]), etc., provide manufacturing simula-
tion/animation for shop floor system with performance
results such as throughput, cycle time, etc. By
providing various statistical tools to analyse the
simulation results, these tools support the system
engineer who intends to derive the optimal design
alternative systematically. As shown in Table 1,
however, they do not cover the technical analysis for
ubiquitous technology, which is a crucial factor in
ubiquitous system engineering.

Ubiquitous network simulators such as ns-2 (ns-2
simulator [Online]) and QualNet(QualNet [Online]),
etc., configure networks such as WLAN, WPAN, etc.,
by defining the behaviour of the network components,
and then simulate their interaction. The simulation
result can be analysed with the help of tools such as
event tracers, trend graphs, etc. Tools in this category
were developed to evaluate the performance of a
certain protocol, and they are mainly utilised for that
purpose.

Several ubiquitous system simulation systems were
developed from various points of view. UbiWISE
(Barton and Vijayaraghavan 2002) is a kind of
ubiquitous computing simulator accommodating
context-aware technology, which may be used for
researchers to develop systems that combine sponta-
neous interaction and physical-virtual connection.
iCAP (Sohn and Dey 2003) and a CAPpella (Dey
et al. 2004) allow users to create their desired
behaviour without writing any code. UbiREAL
(Nishikawa et al. 2006) is a comprehensive simulator
accommodating the ubiquitous technologies of
WLAN, WPAN, RFID, and context-awareness. TA-
TUS (O’Neil et al. 2005) is a ubiquitous computing
simulator supporting the interface with other simula-
tors such as a wireless network simulator. Finally,
Rifidi (Rifidi 2006 [Online]) is a dedicated simulator for
RFID applications providing design and simulation.
Although existing tools partially support system
engineering for ubiquitous systems, they are not
suitable for comprehensive development. In other
words, a new system is needed for developing the
ubiquitous system.

3. Design considerations for CAUSE

The CAUSE system is a computer-aided tool, to some
extent, a kind of expert system to support design,
simulation, and analysis of ubiquitous systems, aiming

www.manaraa.com

S. Jeong et al.

674

"Q]qR[IBAR JOU 1Y//N ‘PIYSHBSUN @ X ‘IOUULW JUAIQYIP © Ul paysnes : ‘paysnes Apred 1y ‘paysnes Ayeam :o ‘paysnes A[Suors e

s3e} pue s1opeal 1Y Suunsyuod pue
3unoares £q uoneordde qr4y 10J 1591

VIN V/IN o V/N VIN X o o pue uonejuswe[duwr 11oddns 01 TorR[MWIS v (900T PYTY) 1PYTY
SINOIABYQQ AIBME
-JX2]U0D PIseq-uonIugodal Uuoensuowap
£q Suruwerdoad ur s1esn pud syroddns 00T v 12
° X X X X X X & yorym uonedrdde areme-1xauo0d v KaQ) ereddv) ®
opoo Aue Junum
mnoym suonedrdde areme-1xa1u0o (€00 £
° X X X X X X & Surd£j0jo1d ur s1asn s)SISSE YOIYM WRISAS Y pue uyos) JvOI
(3591 19pUN
wa)sAs) 1N S 1oddns 03 juowruoIIAud (s00z v 12
° X X X X X ° ° Sunndwod snoymbiqn [eniaa v [I9N.O) SN.LV.L
1X0)U0d snowreA yim suoneordde (9007 v 12
° X ° ° ° X ° ° snojynbiqn 1591 puk je[NWIS 0] AIBMIJOS ¥ BMEYIYSIN) TV AN
SIJ1AD JIqOW
u2aM12q S[020301d puB SIOTAIP SSA[AIIM (zZ00z ueary3erelelip
° X X X V/N X X ° JO $20BJIOIUI JISN 9Y) 1S9} 0} dIBMIJOS Y pue uojreq) aSIMIq
1A
SunIomjou pue yIomjou Ehobw._m-vo.x_%
puR paIIm ‘ssafarim s101paxd jey) aremijos
° ° ° ° ° X ° ° uonen[ead ylomiau ANPpyY-ysiy enn uy (3oNTEND) 12NTEND
SYIOMIU (III[AIBS PUB [BIO]) SSIAIIM
PUB PAIIM IIAO 912 ‘S[000}01d Jseonnu
‘Funnor ‘gD L Jo uonenuis 10y 1roddns
[ENIUBISQNS YJIM [OIBISAI FULIOMIOU
X X ° ° ° X ° ° 18 PI1A3Ie) JOIRINUIS JUIAD JAIISIP (103RmMUIIS Z-Su) Z-SN
suoneordde
o1391e1)s pue [euonerddo 19yjo pue
‘sonSIS0[‘Sursnotarem ‘Surrnjoeynuewl
SuruSisop 10 ‘Furuuerd ‘Sunen[ead 10j
X X X X X ° ° ° posn ‘01em1JOS UONB[NWIS JUIAD JAIISIP (1opowoi1d) [opowo.
SMO
10 sassaooud Jurnmioejnuew Aozm:oém
Surpuey [BLID}EW-UOU) JO ‘AOTAIIS
X X X X X ° ° ° ‘SsQUISNq 9SA[BUE PUB [OpPOW 0} IBM]JOS Y (eua1y) VNI Y
ssouareme AundeS IdY NVAM NV IM uoneneag SISA[euy uonenurg Ayeuonoun,y/a3esn S[00
1X1U0D)

£30]0uyd9) PaIBRPOWONDY

suonounjy JULIAUISUD WISAS

‘sy1om Sunsixd jo uosuredwo)] 9qe

www.manharaa.com

International Journal of Computer Integrated Manufacturing 675

to derive an optimal design alternative before the
physical implementation. Considering the state-of-the-
art of the technology, this is a very challenging
mission. This section discusses some of the design
considerations for CAUSE from the perspective of
various stakeholders including CAUSE developers and
CAUSE users, respectively categorised into system-
level and functional-level aspects.

3.1. System-level aspect

System-level aspects are some of the considerations
related to architecture design taken into account by the
developer of the CAUSE system.

[SR #1] Target application (domain): Different
application domains have totally different archi-
tectures and details, which determine the config-
uration of design, analysis, and simulation. Thus,
the first step in designing the CAUSE system is
defining the target domain.

[SR #2] System accuracy (fidelity): As one of the
primary missions of CAUSE is to provide a means
to check the performance of the target system
before the physical implementation, the simulation
and analysis must be accurate. Thus, a module to
enhance the accuracy is required.

[SR #3] Scalability: As the number of components
used in the ubiquitous system increases, the simula-
tion speed may slow drastically, hampering prac-
tical usage. This should be taken into consideration
in some fashion.

[SR #4] Customisation and compromise (CC)
mechanism: Unlike a conventional CAx system, a
ubiquitous system runs on various scenarios. Thus,
the architecture of CAUSE should be generic to
cover scenarios comprehensively, but should be
equipped with a means for customisation and
compromise (CC) for specific application.

[SR #5] One-centre concept: CAUSE should be
developed based on the one-centre-concept, so that
CAUSE users could perform the entire system
engineering task without leaving the CAUSE system.
Thus, CAUSE needs to interface with other systems
for dedicated functionality and databases.

[SR #6] Interface with external package: To
provide various requirements, CAUSE needs to
have so many algorithms that it would be
impractical to develop all of them. To use those
that are already implemented and available, e.g.,
network simulators (ns-2simulator [Online],
QualNet [Online]), CAUSE needs to have bi-
directional interface for external packages/modules.
[SR #7] External DB: System components like
sensorsrand network are used imdesigning a target

ubiquitous system. The catalogue information
including technical details and prices often change
in the fast growing market. To reflect the timely
information, CAUSE needs to access DBs from
various sources.

[SR #8] Collaborative environment: The CAUSE
system can be used simultancously by multiple
system engineers. In order to support the colla-
borative use of CAUSE, an environment for
collaborative design of ubiquitous systems via the
Internet should be considered.

[SR #9] Dealing with a variety of HCI devices:
Human operators may access a ubiquitous system
via various means (e.g., PDA, smart phone, desk-
top) in various situations (e.g., office, workplace,
etc.). Thus, CAUSE should be designed to provide
customised services.

3.2. Functional-level aspect

Functional-level aspects are some of the functions that
the users possibly want to incorporate in the CAUSE
system.

[FR #1] Basic function. CAUSE should support
ubiquitous system development from the design
stage to the implementation stage consistently. In
order to do this, CAUSE should provide basic
system engineering functions such as design, simula-
tion, analysis, evaluation, and documentation.

[FR #2] Ubiquitous system design: The target
system is defined in terms of system layout,
component design, operation scenario, etc. Sys-
tematic description of such a system is a big and
difficult task. CAUSE should have a module to
support this function in some fashion. For such a
purpose, a structured method or language includ-
ing syntax and semantics for describing the system
scenario is necessary.

[FR#3] Knowledge-based system: All system engi-
neers do not have interdisciplinary expertise
including ubiquitous computing technology, infor-
mation technology, and manufacturing technology.
Thus, a knowledge-based design advisor is re-
quired, which provides some technical information
to help choose the adequate components and install
them.

[FR #4] Interoperability between devices and appli-
cation systems: In the ubiquitous environment,
various devices and application systems used at
the different life cycle stages communicate with
each other via wired or wireless networks. As these
systems may run on various platforms, CAUSE
must guarantee interoperability between the var-
ious devices, platforms, and application systems.

www.manaraa.com

676 S. Jeong et al.

[FR #5] Use of standardised data: The ubiquitous
system aims to collect required information accord-
ing to the purpose of the system. The data must be
standardised for the seamless information flow
throughout the entire product life cycle.

[FR #6] Analysis of system performance: This
function is the most fundamental part of the
CAUSE system. System performance must be
analysed from various aspects such as productivity
(for example, throughput, goodput, delay, loss,
etc.), development/maintenance cost, etc.

[FR #7] System optimisation: Another key feature
to be addressed in CAUSE is optimisation. If the
performance of designed systems is acceptable,
then the system engineer can select the one that
would cost the minimum among the feasible
alternatives.

[FR #8] 3D simulation: Like other CAXx systems,
CAUSE should show the virtual operation of the
designed ubiquitous system realistically. This will
help the system engineer recognise undesirable
behaviour and invoke better design.

[FR #9] Verification and validation (V&V): One of
major functions of CAUSE is V&V for the
ubiquitous system. V&V is the process of checking
that a system meets specification and fulfils its
intended purpose (Sargent 2005). In the case of
CAUSE, it means that CAUSE system verifies
whether or not the designed system works well,
complying with the designer’s intent through
simulation and analysis, and validates whether or
not the designed system is optimal.

4. Generic architecture of CAUSE system

The various considerations and requirements given in
section 3 must be incorporated into the CAUSE
system in some fashion. This section derives an
architecture by a functional model of CAUSE via
IDEFO0 representation, followed by an implementa-
tion architecture via the SPL (Software Product Line)
approach.

4.1. Functional design using IDEF0 diagram

An IDEFO diagram is a useful tool to model a system
in terms of its functional description, inputs, outputs,
controls, and mechanisms. Here, it is applied in
deriving the functional architecture for CAUSE.
Figure 3 and Figure 4 show the topmost and second-
level diagrams for the CAUSE system based on IDEF0
notation, respectively. The topmost function of the
CAUSE system is developing a ubiquitous system. To
develop a ubiquitous system, the information about
thetargetubiquitous systemrisirequired. Thus, system

layout, operation scenario, and component specifica-
tions are the inputs for design. Besides, simulation
setup, optimisation objective, and measurement data
are required as inputs for simulation, optimisation, and
validation of the designed system, respectively. As the
ultimate goal of the CAUSE system is to derive the
optimal design alternative, the optimal design alter-
native is the ultimate deliverable of the CAUSE
system, and it is the output of the topmost function
of the CAUSE system. In addition, documents for
implementation, performance analysis result, and
estimated cost are provided.

During the development of a ubiquitous system,
domain knowledge as well as some standard, model,
language, criteria, and formats are required as the
controls of the topmost function of the CAUSE
system. On the other hand, the mechanism involves
knowledge base and the inference engine for the
knowledge-based system, graphics library and the
simulation engine for three-dimensional (3D) simula-
tion, and several supporting packages (modelling,
simulation, analysis, drafting).

The topmost function of the CAUSE system
consists of the following six second-level functions:
(1) design a ubiquitous system, (2) simulate the
design alternatives, (3) enhance the accuracy of the
CAUSE system, (4) analyse the simulation result, (5)
select the optimal design alternative, and (6) docu-
ment the design alternative. The design, simulation,
analysis, evaluation, and documentation functions
are derived from the basic functions. In addition,
the accuracy enhancement function is added for
the verification and validation. Table 2 shows the
relationships between the design considerations in
functional-level aspect and IDFFO functions of the
CAUSE system.

4.2. Generic architecture of CAUSE system
4.2.1. SPL approach

CAUSE supports a variety of ubiquitous systems with
different scenarios, components, and environments. In
this paper, we adopt an advanced software engineering
approach called SPL (Software Product Line) ap-
proach. SPL is powerful in terms of software reuse,
variations, and extensibility (Gorton 2006).

From the perspective of the design consideration,
the SPL approach is very powerful in the sense that
domain-specific CAUSE systems can be developed with
common core assets and application specific custom
assets. The core assets are designed to include as much
functionality as required for design, analysis, and
simulation in various domains, while the custom assets
to contain functions individualised to a certain

www.manaraa.com

International Journal of Computer Integrated Manufacturing 677

Controls
A
[i]
Domain knowledge
Interface standards
Standard data model
Scenario description language
Accuracy criteria
Performance criteria
Budget limit
Regulations
* l *l)omain-speciﬁc document format

System layout
-~ Y Y

A 4

Operation scenario

A 4

Component specifications |

Develop a ubiquitous system

Documents for implementation
|

Optimal design alternativg

Inputs . ! : Outputs
IR Simulation setup > using a CAUSE system Estimated cogt P
Measurement data
—’ .
Performance analysis result_
_ Optimization objective > A0 =
y A A

%

T T[)mﬂing package
Analysis package

Simulation package
Modeling package

Graphics library
Database management system
Inference engine
Knowledge base
Ubiquitous system engineers

Y,
Mechanisms

Figure 3. Topmost IDEF0 diagram of CAUSE system.

application domain. In this way, the developer can
select a set of appropriate functions and configure them
to build a specific CAUSE system for the target
domain.

Adopting the SPL approach, we derived a generic
architecture of the CAUSE system including three
layers: 1) User interface layer, 2) Application layer,
and 3) Database layer, as shown in Figure 5. The user
interface layer is the custom asset which provides
configurable functionalities to develop a domain-
specific CAUSE system ([SR#1]). The application layer
is the core asset which includes broad functions for
engineering a ubiquitous system. The database layer
supports a collaborative environment through Internet
access ([SR#8]). Note that the architecture has rooms
for plug-in modules to accommodate the new technol-
ogies and devices. Further, it also supports component
substitution and parameter setting for adaptation
(note that this is not shown in Figure 5). The following
subsections discuss the details for the major modules of

oL Zyl_llsl

4.2.2. Designer

In the CAUSE system, the ubiquitous system is defined
as a combination of three kinds of components
(people, objects, and devices) with a certain scenario
over an environment. Thus, the CAUSE system
regards the ubiquitous system as a three-layered
structure of an environment layer, component layer,
and scenario layer ([SR#4]). To create the ubiquitous
system model, the Designer has six sub-modules whose
functions are as follows:

Environment designer: Environmental elements,
including temperature, humidity, etc., and physical
structures such as a factory, hospital, etc., are
modelled here. They are represented as the
combination of grids.

Component designer: Components are selected by
accessing component database. Also, new compo-
nents can be defined, or existing components can be
modified.

www.manaraa.com

678 S. Jeong et al.

Interface standards Accuracy criteria |Performance criteria Budget limit Domain-specific
Domain knowledge documentation
Scenario description language Regulation format
Standard data model R
Design alternative i
‘or a ubiquitous system
v y =
System layout o[Designa P i
Operation scenario | ubiquitous
Component spec1ﬁcat10ns; system Y v v Simulation result
™ Al Simulate the | ="
. i AAAAA A deSIgn]
imulation setup »| alternative Updated models
A2 ‘3| Enhance the
W WY accuracy of
the CAUSE
Measurement data »| system .
A3 Analyse the Estimated cost
y simulation .
reanlt Perfgrmance analysis result
A4 vy Vv ¥ . - .
. 2 S Select the Optimal des1gnaltemanv=e
“—» optimal
design Documents for
Optimization objective alternative | | (] Document |implementatign
" AS the design
A alternative
A6
Modeling package
Graphics library
Datal management system
Ubiquitous system engineer
Inference engine
Knowledge base Simulation package |Analysis package Drafting package
Figure 4. Second level of IDEF0 diagram for CAUSE system.
Table 2. Relatiqnship between the design considerations about the available range of the sensor, and some
and IDEF0 functions. guidelines on the installation ([FR#3]).
Design considerations in Modelling support module: 1t provides functional-
functional-level aspect IDEFO 2nd-level function ities required to use various modelling methods
. . such as programming language, scenario descrip-
#1, #2, #3, #4, #5, #8 design a ubiquitous system X | prog d dg g gif’ ¢ R p
H#1, #2, #3, #5, #8 simulate the design alternatives 100 language, ar.l lagrams.] a system engmeer
#3, #9 enhance the accuracy of the uses a UML diagram to design a scenario or
CAUSE system behaviours of a component, the diagram editing
#1, 16 analyse the simulation result function should be supported.
#1, #6, #7 select the optimal design L. .
alternative Ubiquitous system model generator: A complete

#1 document the design alternative design is generated by putting together all sce-
narios, components, and environments used in the
design. Then, it is stored as a design alternative in
the form of the ubiquitous system data model.

Scenario designer: The behaviour of the
component and the interaction among components

are defined. Also, the parameters (e.g. position, 4.2.3. Simulator

direction, etc.) of the components are set. The Simulating a ubiquitous system can verify the design
completed design is stored in the ubiquitous system alternatives. Besides, the simulation results are stored
model database through the modelling support in the databases for subsequent analysis. The simula-
module ([FR#2]). tion progress is visualised in 3D, and the result can be
Design advisor: It provides relevant expertise to the shown during the simulation. The Simulator is a
system engineer, for example, when a sensor should discrete event simulator including five sub-modules: a

he information batch simulator, interactive simulator, virtual reality

www.manaraa.com

Ol LE Zyl_i.lbl

International Journal of Computer Integrated Manufacturing 679

User interface layer

Designer interface I | Simulator interface I I Accuracy enhancer interface I I Analyser interface I | Document generator interface I
Application layer
Designer Simulator | Document generator
Sce_nario Componem Environment _Batch ll:nemtive \r::l‘:; Accuracy enhancer Analyser
designer designer designer 1 I B
Design Statistical What-if Optimal design
| Modeling support module | advisor | Visualization support module | Experiment Model analyser analyser recommender
updater
| Ubiquitous system model generator | I Simulation engine | Analysis support module I
Service framework
Scenario Context Network Tt by HCI device Lniterface with <}::> Pll}g—l‘n for
management management management 3 management ubiquitous
= 3 A management service 5 external . I
service service service service technologies

L

Database layer

Ubiqui hnol Ubiqui system Simulation result Design alternative
owledge base model database database database

Figure 5. Implementation architecture of CAUSE system.

simulator, visualisation support module, and simula-
tion engine.

Batch simulator: 1t performs a simulation which
does not require user inputs during the simulation.
The simulation is executed according to pre-defined
scenarios and algorithms.

Interactive simulator: It carries out a simulation
which takes the inputs from a user during the
simulation. Like in a computer game, a user can
control components in the system.

Virtual reality simulator: 1t provides virtual reality
environments where a user can experience the
designed system. For this purpose, it can be
connected with virtual reality devices such as
HMD (Head Mounted Displays) ([SR#9]).
Visualisation support module: It supports the
graphical functionalities for the simulators. It
includes algorithms for implementing various
reality-levels, which range from 2D to 3D to the
virtual reality ([FR#8]).

Simulation engine: In order to test the design
alternative, CAUSE can repeat the simulation
tens or hundreds times. Thus, a simulation engine
should process a number of events within a short
time ([SR#3]). For example, a fast scheduling
algorithm and parallel processing techniques are
applied to the simulation engine.

4.2.4. Accuracy enhancer

A module for enhancing the accuracy is required as the

practical usage of CAUSE ([SR#2]). This would be
used in conjunction with physical experiments. This
module consists of two sub-modules, and their func-
tions are as follows:

Experiment executor: It defines an accuracy para-
meter, and makes an experimental plan to estimate
the parameter. It takes the real raw data from the
experiments and post-processes them. It also
provides basic functionalities to analyse the data.
Model updater: 1t utilises the experimental result to
update the analysis model, used in the Simulator
and the Analyser. Then, the gap between the reality
and the simulation is filled gradually.

4.2.5. Analyser

The Analyser includes four sub-modules: statistical
analysis, what-if analysis, optimal design recommen-
der, and analysis support modules. Based on the
simulation results stored in the log files of the
databases, the performance of the design alternative
is evaluated by statistical analysis ([FR#6]). Further-
more, it performs what-if analysis, and recommends
the optimal design alternative.

Statistical analysis: Statistical techniques such as
confidence interval analysis and correlation analy-
sis are used to analyse the simulation result
([FR#6]). The output, in the form of report or
chart, can be used in decision making.

What-if analysis: The simulation results of multiple
design alternatives are analysed and compared. The

www.manaraa.com

is crucial for the
*4 +

680 S. Jeong et al.

various design alternatives are simulated repeat-
edly, and the results are analysed to derive the
optimal design.

Optimal design recommender: The optimal design
alternative is recommended based on the cost
information and the result of what-if analysis
([FR#7]). Various optimisation techniques are
used to maximise the overall objective of the
system performance.

Analysis support module: This module supports
algorithms used in the analysis and a computing
engine for the algorithms.

4.2.6. Service framework

In order to adopt the SPL approach, this service
framework employs the framework and plug-ins
mechanism which provide broad functionalities re-
quired to deal with a ubiquitous system. The frame-
work consists of five services and one interface, which
provide functions used commonly in the modules
of the application layer. It communicates with
the database layer and modifies the ubiquitous
system data in the database layer. The details are as
follows:

Scenario management service: This service provides
functions related to the scenario ([FR#2]). For
example, it schedules events, triggers the beha-
viours of components based on the scenario, and
changes the states of the components and the
ubiquitous system according to the result of the
behaviours at the simulation stage.

Context management service: A ubiquitous system
completes tasks smartly based on the context.
Thus, this service gives functionalities about con-
text generation and awareness. The functionalities
enable the devices and system to act intelligently.
Network management service: A network is an
indispensable component of a ubiquitous system.
This service supports network simulations. It
provides capabilities for network protocol and
electromagnetic propagation simulation.
Interoperability management service: The ubiqui-
tous environment requires devices and application
systems to communicate with each other. For this,
this service provides functions related with the
communication, transport, storage, and representa-
tion of data ([FR#4]).

HCI device management service: HCI devices are
widely used for human operators to access a
ubiquitous system. This service provides emulation
of HCI device in the CAUSE system. This
facilitates the development of customised HCI
services in the ubiquitous system.

Interface with externals: As developing a complete
CAUSE system is very challenging, external
packages/devices and databases should be
exploited as much as possible ([SR#6], [SR#7]).
Furthermore, to enhance the accuracy of a CAUSE
system and to test a newly developed HCI service,
the interfaces with externals such as hardware
devices are required. The function also enables the
one-centre concept ([SR#5]).

5. Implementation issues of CAUSE system

To embody CAUSE architecture given in section 4, a
great deal of research is required, encompassing various
domains. This section classifies technology for the
implementation, followed by implementation strategy.

5.1. Enabling technologies for CAUSE System

Roughly speaking, technologies involved in the im-
plementation of the CAUSE system are classified into
three types: 1) System engineering-related, 2) Ubiqui-
tous technology including information and commu-
nication, and 3) Sensors and devices including RFID
and mobile devices. Taking the state-of-the-art tech-
nology in each area into account, they can be
summarised as Table 3.

System engineering: Technologies to design, simu-
late, analyse, and optimise the ubiquitous systems
under consideration characterised by the product
type and environment where the product is
manufactured, used, and recycled.

u-Technology: Mainly networking technologies
covered in the CAUSE system. Note that although
other u-Technologies can also be covered, discus-
sion about them is omitted here.

Real-world environment & devices: Modelling of
environment such as radio propagation model and
error model as well as device-level technology for
data acquisition technology such as embedded
devices, RFIDs, active badges, systems on chip,
multi-function sensors and smart cards.

5.2. Implementation strategy for CAUSE system

Maximal utilisation of contemporary technology:
This is to deal with crucial requirements of CAUSE
addressed by [SR#5], [SR#6], and [SR#7]. In
implementing the CAUSE system, it is inefficient
to make all things. Some simulators or tools for
technologies required in CAUSE already exist. For
example, dedicated network simulators like ns-2
are available for use. If the existing tools are used,
the development time and effort are reduced.

www.manaraa.com

International Journal of Computer Integrated Manufacturing

Table 3. Enabling technologies for CAUSE system.

681

Group Technology

Features

System engineering
Design Modeling language

Database

Design advisor

Simulation Models for u-Technology

System modeling and specification language (DEVS, Perti
Net, UML, etc.)
DBs for environment, component, and scenario
Providing advice for the installation to prevent the design error
Models that describe the behaviours of u-Technology listed below

Simulation engine

Continuous or discrete event simulation

Real-time simulation, parallel and distributed computing, etc.
DEVS simulation toolkit (DEVSJAVA, CD++, DEVS/C++, etc.)

Interface with the external

Hardware-, software-, human-in-the-loop simulation

Standardised interface such as DIS, HLA, TCP/IP socket

Visualiser
Statistical analysis toolkit
Optimisation toolkit

Analysis

u-Technology

Networking WPAN

Animator or visualiser in 2D or 3D manner
Technique to process the simulation result
Technique to derive the optimal design alternative

A computer network used for communication among computer

devices close to one person (ZigBee, IEEE 802.15, Bluetooth,
UWB, IrDA)

WLAN
WMAN

Wireless local area network (IEEE 802.11)
Telecommunication technology that provides wireless data long

distances in a variety of ways (WiBro, IEEE 802.16, WiMax)

IP (IPv4, IPv6)
Routing protocol

Providing unique address for resources and devices
Protocols that specify how routers communicate with each other

(For example, DSDV, DSR, AODV, OLSR, etc. as wireless
ad-hoc routing)

Transport protocol

Delivering messages between networked hosts (reliable (TCP)

or unreliable (UDP))

Real-world environment & devices

Channel Radio Propagation

Channel propagation models (free space model, two-ray ground

model, shadowing model, etc.)

Device RFID

An automatic identification method (Standardisation: IS/IEC

18000 series and EPCglobal)

Multi-function sensor

Devices to sense the status of resources and products (smart

sensor, active badge, web camera, smart card, etc.)

Mobile device

Portable devices for real-time information exchange

(PDA, Laptop, etc.)

Hence, it is better for CAUSE to utilise the
contemporary technologies, if possible. Thus, the
generic architecture of CAUSE system supports
the interface with externals. Here, externals in-
cludes real devices such as sensors, VR (Virtual
Reality) instrument, etc., as well as existing
simulators (e.g. ns-2, QualNet, etc. for network
simulators). In implementing the interface, existing
standardised interfaces such as DIS (IEEE 1278),
HLA (IEEE 1516.1-2000), TCP/IP socket may be
used.

Step-by-step implementation: This is to deal with
several issues addressed by [SR#1], [SR#2], and
[SR#4]. Accuracy of the simulation result is a
crucial factor for CAUSE. However, it is impos-
sible to implement CAUSE with a required level of
accuracy from the beginning. Thus, we adopt a
‘step-by-step implementation’ strategy. This means
that CAUSE makes up for the inaccuracy by
learning: Itvis related torther‘accuracy enhancer’

module. CAUSE system supports it in three ways.
It provides 1) various model databases, 2) a
function to add new models, and 3) configuration
of the parameters. First, by providing the database
of various models, a user can select an appropriate
model depending on the environment. However, if
there is not an appropriate model in the database, a
new model can be added. Furthermore, the
parameters of the model are adjustable according
to the environment of the target ubiquitous system.
Engineering approach to the undealt problem: This is
related with issues addressed by [SR#2], [FR#6],
and [FR#7]. Even if a number of researches have
been made on the modelling of ubiquitous comput-
ing technology, their usage in practice is still very
limited. This is mainly owing to the fact that
theoretic model is not fully accommodating all the
parameters existing in the reality, and/or a model is
not suitable to all cases. To fulfil the mission of
CAUSE, however, uncovered practical parameters

www.manaraa.com

682 S. Jeong et al.

should be accommodated in the analysis model. To
cope with such a problem, engineering approach
based on experimental design and analysis, for
instance, has to be developed.

6. Illustrative prototype

Implementation of the CAUSE system presented in
this paper requires a great amount of research, time,
and effort. This section shows how the CAUSE
system looks and addresses the usefulness of CAUSE
with a small-scale prototype. The prototype was
developed while minimising the effort by implementing
only a subset of crucial modules required for the
illustration. Thus, the accuracy of the simulation
results is not sufficiently guaranteed in the prototype.
The accuracy enhancement will be sought in forth-
coming publications.

6.1. Prototype system

As shown in Figure 6, the target application of the
prototype is a conveyer line carrying multiple parts,
where the selection and installation of RFID is a
concern for implementation. Thus, the prototype is
named as ‘CAUSE for RFID’. According to the
modules of CAUSE architecture, the scenario herein
corresponds to a conveyor system delivering multiple
products with RFID tags attached to the products, and
objects and devices are products, and RFID readers
and tags, respectively. There is no person in this
prototype.

A main concern in this prototype is the readability
of the RFID tags by the RFID readers depending on

¥ : &
Conveyor system ~_
-:‘-.'__*. = ': 7.*;" g7 ;

the setting and configuration. Thus, the performance
index is whether or not the RFID tags can be read,
together with additional information such as the rec-
eived power. Another concern is to compare various
alternatives with different setting and configuration to
derive an optimal design alternative via what-if
analysis.

The developed prototype is composed of three main
modules: Designer, Simulator, and Analyser based on
the functional structure of section 4. Each module has
its own interface and function. The prototype was
implemented using Visual C++ and OpenGL. Techni-
cally, the prototype adopts the air interface RFID
protocol of EPCglobal (EPCglobal), and the para-
meters of the Hand IT-2G RFID reader and of the
PICOPASS 16K RFID tag are used as default values
(INSIDE Contactless). The wireless communication
channel is modelled by the Friis propagation model
(Balanis 1997) with error rate (the ratio of the signals
with error bits to the transmitted signals) of «€[0,1).

Note that Friis propagation model (Balanis 1997) is
one of the most used propagation models, some of
which are shown in Table 4, where P, and P, represent
the transmitted and received powers in the unit of dB,
respectively; G, and G, the antenna gains of the
transmitter and the receiver; 4, and A, the antenna
heights of the transmitter and the receiver; dy and d the
reference distance and the distance between the
transmitter and the receiver; 4 and L the wavelength
and the system loss factor; I', and I'. represent the
transmitter and receiver reflection coefficients, respec-
tively; p, and p, represent the transmitter and receiver
polarisation vectors, respectively; 6, and ¢, represent
the angles related to the relative orientation; f the
path-loss exponent; X,z a normal random variable
with zero-mean and the variance of ¢°.

6.2. Usage scenario

In this subsection, the usage scenario of the prototype is
illustrated. In CAUSE for RFID, to design the target
system means to find the best configuration (location,
specs, number, etc.) of RFID reader and tags so that the
products cannot be missed in reading with the minimum
cost among the alternatives. The ubiquitous system
engineer wants to design and verify the RFID system
with the prototype, to find the following: 1) Number,
position, and angle of RFID readers, 2) Position of
RFID tags, and 3) Specification of RFID readers and
tags. To achieve such a goal, the following procedures
with CAUSE for RFID are taken step by step.

(1) Designing the environment: When CAUSE for
RFID starts, a new environment is created, or
an existing environment is loaded (Figure 7).

www.manaraa.com

International Journal of Computer Integrated Manufacturing 683

Table 4. Some radio propagation models.

Model Equation
Free space (Friis) (Balanis 1997) G,(0:,$,)G.(0,, ¢,)2 o
) = p LRI (1 r)1 I P
Two-ray ground reflection (Rappaport 2002) Po(d) = P.G,G, 2 h?
Shadowing (Rappaport 2002) P,(d) d
= —10p41 — X
P,-(do) dB Oﬁ o8 do s

File(E) Design(@) _Simulation(S)
D&d £S5

Component list

1 Gate

1 Conveyor
1 ShopFloor
1 StantShelf

Tag Batch View Analysis History
| TagiD EPC code. Design Attemative

Property Value

L] M

Figure 7. Environment design.

(2) Creating components: RFID readers and tags
and products are created either by selecting
them from databases (currently from local
databases, but could be linked to that of parts
vendors), or by defining new specifications
(Figure 8).

(3) Setting up a scenario: For what-if analysis, the
setting and configuration are changed. Here,
the number, the position, and the angle of
RFID readers are variables.

(4) Performing simulation: The received power is
calculated, and the readability is determined.
As shown in Figure 9, the simulation progress
is visualised in 3D, and the simulation results
are displayed. Simulation results are stored as
log files as well.

(5) Analysing the simulation result: The stored
results can be shown in tables or graphs. Figure
10 shows a table for the readability and a graph
for the change of the received power according
to time.

(6) Adding the result as a design alternative: The
designed system with its simulation result is

RFID defintion 3

RFID Reader |RFID Taa|

Antenna type

(O Dipole antenna & Patch antenna

Model name

Hand'IT-2G

Number of readers

Parameter

Trangmitter reflection ,0—|
coefficient

Transmitted power

Transmitter gain

Deploy
Operating frequencies |1355EIEIUIJ | [Cancel |

[0K][Cancel]

Figure 8. Component design.

design alternatives are used for the system
optimisation.

(7) Repeating 2) to 6): For what-if analysis, the
above steps are repeated under different condi-
tions. The result of each run is stored one by
one, and multiple design alternatives are
created. Table 5 shows seven design alterna-
tives, among which alternative 6 is selected as
the optimal design alternative, as the fewest
RFID readers are required.

(8) Recommending the optimal design alternative
and printing the details: After obtaining the
optimal design alternative, the building speci-
fication is created, and the implementation is
launched.

In this way, CAUSE can be used to design the
ubiquitous manufacturing system systematically and to
determine the optimal design alternative through
simulation and analysis. Although CAUSE for RFID
is not currently perfect, the above example of the

www.manaraa.com

684 S. Jeong et al.

Banier Bmcwrg poser Bande &
Beate © 00044 .
[yvea e.c0aals »
Senter s 0000142 ’
Bt § < aoooot .
e, ©.000583 ’
Bt | © 200080 v
e P ’
Ces e L4
Bt § ¢ aonows ’
e Pyt ’
Sonte | © 9000 73 .
o < co0ow M
Bmnder § © mamyew .
e & 200003 ,
et o souli ¥
Seaie | 2000 4
Rander € 200017
Sente Somauls .
e < 200081 .
ante : < aooooe.

Sander | © 2000 ™ r
e § © aoo0as
Bande s ©.0000 1% .
Beate & 200007
o e.co034
Sestw € a0) "
ey < 200080 ’
Leme ¢ oo0:8) .
Eeate 2000 -
e = 200004
Bander & 200 ™ ’
P < cooce -
»
tonn | [ex | [conw |

Figure 9. Simulation.

[CAUSE for RFID - Analyzer] Table

Readabiity between Readers and Tags

Tagl
Tag2
Tag3
Tag4
Tags
Tag6
Tag7
Tag8
Tag9
Tag 10

Menresdsityrate (W) % |

[CAUSE for RFID - Analyzer] Graph

<The received power of Tag 1>
Received Power

[Close]

(a) Readability between readers and tags

Figure 10. Two types of simulation results.

Table 5. Deriving the optimal design alternative.

Condition of RFID readers

No. Number Position Angle Readability
1 1 12 45 40%
2 2 1/2,2/3 45 80%
3 3 1/4, 2/4, 3/4 45 100%
4 4 1/5, 2/5, 3/5, 4/5 45 100%
5 3 1/4, 2/4, 3/4 0 100%
6 2 1/3,2/3 0 100%
7 1 12 0 70%

usage scenario is sufficient to show that CAUSE
system enables a system engineer to obtain the optimal
design alternative before the physical implementation.

7. Concluding remarks
This paper proposed a system engineering approach

embodying the
*4 *

(b) The received power of tag

UbiDMR paradigm, for ubiquitous manufacturing
system design, analysis, and verification. Considering
that the contemporary method is a manual method
based on trial-and-error, requiring time and cost,
CAUSE is a research topic of great worth. In terms
of realisation, CAUSE requires highly complex tech-
nologies throughout the domains of system engineer-
ing, and ubiquitous computing software/hardware
technologies.

Through the comprehensive survey and analysis of
the contemporary technology, we derived a systematic
procedure for the CAUSE system: 1) Requirement
analysis from the perspectives of system and functional
aspects, followed by 2) Architecture design, and 3)
Implementation strategy. To show the usefulness of the
CAUSE, we developed a prototype system for design-
ing manufacturing system with RFID. The prototype
showed that CAUSE can be used as a means for
implementing ubiquitous manufacturing system before
the physical implementation.

www.manaraa.com

International Journal of Computer Integrated Manufacturing 685

As previously mentioned, the accuracy issue is very
important, as it is directly coupled with the effective-
ness of CAUSE. Accuracy enhancement of CAUSE
and incorporation of other ubiquitous elements, such
as ubiquitous sensors/network are left for the future.
Currently, we are developing accuracy measurement
and enhancement methods under various conditions.

Acknowledgements

This research was in part supported by the BK21 program
for emerging technology funded by the Ministry of Education
and Science in Korea, and by the grant for The ubiquitous
factory system design and control funded by Doosan
Infracore Ltd. in Changwon, Korea between 2006 and 2008.

References

Arena [Online]. Available from: http://www.arenasimulation.
com

Balanis, C.A., 1997. Antenna theory: analysis and design. 2nd
ed. New York: Wiley.

Barton, J.J. and Vijayaraghavan, V., 2002. UBIWISE, a
ubiquitous wireless infrastructure simulation environment.
HP Lab.

Dey, A.K., Hamid, R., Beckmann, C., Li, 1., and Hsu, D.,
2004. A CAPpella: programming by demonstration of
context-aware applications. In: Proc. CHI'04.

EPCglobal, 2006. EPC Radio-Frequeny Identity Protocols
Class-1 Generation-2 UHF RFID Protocol for Commu-
nication at S60M Hz-960 M Hz.

Gorton, 1., 2006. Essential Software Architecture. New Y ork:
Springer.

Huang, G.Q., Wright, P.K., and Newman, S.T., 2009.
Wireless manufacturing: a literature review, recent
developments, and case studies. International Journal of
Computer Integrated Manufacturing.

Huang, G.Q., Zhang, Y.F., and Jiang, P.Y., 2007. RFID-
based wireless manufacturing for walking-worker assem-
bly islands with fixed-position layouts. Robotics and
Computer-Integrated Manufacturing, 23, 469-477.

Huang, G.Q., Zhang, Y.F., and Jiang, P.Y., 2008. RFID-
based wireless manufacturing for real-time management
of job shop WIP inventories. International Journal of
Advanced Manufacturing Technology, 36, 752-764.

IEEE 1278, 1995. Standard for Distributed Interactive
Simulation.

SRR fyl_llsl

IEEE 1516.1-2000, 2000. Standard for Modeling and Simula-
tion High Level Architecture — Federate Interface
Specification.

INSIDE Contactless [Online]. Available from: www.inside
contactless.com

Lee, B.E. and Suh, S.H., 2008. An architecture for
ubiquitous product life cycle support system and its
extension to machine tools with product data model.
International Journal of Advanced Manufacturing Tech-
nology, 42, 606-620.

Nishikawa, H., Yamamoto, S., Tamai, M., Nishigaki, K.,
Kitani, T., Shibata, N., Yasumoto, K., and Ito, M., 2006.
UbiREAL: Realistic smartspace simulator for systematic
testing. LNCS, 4206, 459-476.

ns-2 simulator [Online]. Available from: http://www.isi.edu/
nsnam/ns

O’Neil, E., Klepal, M., Lewis, D., O’Donnell, T., O’Sullivan,
D., and Pesch, D., 2005. A testbed for evaluating human
interaction with ubiquitous computing environments. In:
Proceedings of Tridentcom 2005.

Promodel [Online]. Available from: http://www.promodel.
com

QualNet [Online]. Available from: http://www.scalable-
networks.com

Rappaport, T., 2002. Wireless communications: principles and
practice. 2nd ed. New York: Prentice Hall.

Rifidi: software defined RFID technology, 2006 [Online].
Available from: http://www.rifidi.org

Sargent, R.G., 2005. Verification and validation of simula-
tion models. In: Proceedings of Winter Simulation
Conference, 130-143.

Shin, S.J., Yoon, J.S., and Suh, S.H., 2007. A conceptual
model for ubiquitous factory. In: Proceedings of Korean
Society of Precision Engineering.

Sohn, T. and Dey, A., 2003. iCAP: an informal tool for
interactive prototyping of context-aware applications. In:
Proc. CHI'03.

Suh, S.H., Shin, S.J., Yoon, J.S., and Um, J.M., 2008.
UbiDM: A new paradigm for product design and
manufacturing via ubiquitous computing technology.
International Journal of Computer Integrated Manufac-
turing, 21, 540-549.

Um, J.M., Yoon, J.S., and Suh, S.H., 2008. An architecture
design with data model for product recovery manage-
ment systems. Resources, Conservation and Recycling, 52,
1175-1184.

www.manaraa.com

http://www.arenasimulation.com
http://www.arenasimulation.com
http:www.insidecontactless.com
http:www.insidecontactless.com
http://www.isi.edu/nsnam/ns
http://www.isi.edu/nsnam/ns
http://www.promodel.com
http://www.promodel.com
http://www.scalable-networks.com
http://www.scalable-networks.com
http://www.rifidi.org

Copyright of International Journal of Computer Integrated Manufacturing is the property of
Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.

Copyright of International Journal of Computer Integrated Manufacturing is the property of
Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.

